Inhibition of Neddylation Modification Sensitizes Pancreatic Cancer Cells to Gemcitabine
نویسندگان
چکیده
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA with a 5-year survival rate less than 3% to 5%. Gemcitabine remains as a standard care for PDAC patients. Although protein neddylation is abnormally activated in many human cancers, whether neddylation dysregulation is involved in PDAC and whether targeting neddylation would sensitize pancreatic cancer cells to gemcitabine remain elusive. Here we report that high expression of neddylation components, NEDD8 and NAE1, are associated with poor survival of PDAC patients. Blockage of neddylation by MLN4924, a small molecule inhibitor targeting this modification, significantly sensitizes pancreatic cancer cells to gemcitabine, as evidenced by reduced growth both in monolayer culture and soft agar, reduced clonogenic survival, decreased invasion capacity, increased apoptosis, G2/M arrest, and senescence. Importantly, combinational treatment of MLN4924-gemcitabine near completely suppressed in vivo growth of pancreatic cancer cells. Mechanistically, accumulation of NOXA, a pro-apoptotic protein and ERBIN, a RAS signal inhibitor, appears to play, at least in part, a causal role in MLN4924 chemo-sensitization. Our study demonstrates that neddylation modification is a valid target for PDAC, and provides the proof-of-concept evidence for future clinical trial of MLN4924-gemcitabine combination for the treatment of pancreatic cancer patients.
منابع مشابه
Plk1 phosphorylation of orc2 and hbo1 contributes to gemcitabine resistance in pancreatic cancer.
Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 and Hbo1 mediates the resistance to ge...
متن کاملCancer Therapeutic Insights Plk1 Phosphorylation of Orc2 and Hbo1 Contributes to Gemcitabine Resistance in Pancreatic Cancer
Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 andHbo1mediates the resistance to gemc...
متن کاملResistance in Pancreatic Cancer Plk1 Phosphorylation of Orc2 and Hbo1 Contributes to Gemcitabine
Although gemcitabine is the standard chemotherapeutic drug for treatment of pancreatic cancer, almost all patients eventually develop resistance to this agent. Previous studies identified Polo-like kinase 1 (Plk1) as the mediator of gemcitabine resistance, but the molecular mechanism remains unknown. In this study, we show that Plk1 phosphorylation of Orc2 andHbo1mediates the resistance to gemc...
متن کاملpERK1/2 silencing sensitizes pancreatic cancer BXPC-3 cell to gemcitabine-induced apoptosis via regulating Bax and Bcl-2 expression
BACKGROUND Our previous study has demonstrated that knockdown of activated ERK1/2(pERK1/2) sensitizes pancreatic cancer cells to chemotherapeutic drug gemcitabine (Gem) treatment. However, the details of this survival mechanism remain undefined. It has also shown that Bcl-2 confers resistance and Bax sensitizes to gemcitabine-induced apoptosis in pancreatic cancer cells. Furthermore, the extrac...
متن کاملKnockdown of clusterin sensitizes pancreatic cancer cells to gemcitabine chemotherapy by ERK1/2 inactivation
OBJECTIVES To study the hypothesis that gemcitabine treatment augments the chemoresistance to gemcitabine by clusterin (sCLU) upregulation. Clusterin inhibition could augment the chemosensitivity of human pancreatic cancer cells by inhibition of clusterin-dependent pERK1/2 activation. METHODS Clusterin was silenced by serial concentration of OGX-011 transfection in pancreatic cancer MIAPaCa-2...
متن کامل